RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2013 Volume 20, Issue 4, Pages 15–26 (Mi da736)

This article is cited in 3 papers

A lower bound on formula size of a ternary linear function

Yu. L. Vasil'ev, K. L. Rychkov

Sobolev Institute of Mathematics, 4 Acad. Koptyug Ave., 630090 Novosibirsk, Russia

Abstract: The formula size of a ternary linear function that depends on $n$ variables is shown to be not less than $n^2+\frac32n-o(n)$. Bibliogr. 8.

Keywords: formula size, $\pi$-scheme, lower bound for the complexity.

UDC: 519.714

Received: 18.03.2013


 English version:
Journal of Applied and Industrial Mathematics, 2013, 7:4, 588–596

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026