RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2013 Volume 20, Issue 2, Pages 15–25 (Mi da723)

On partitions of an $n$-cube into perfect binary codes

G. K. Guskov

Sobolev Institute of Mathematics, Novosibirsk, Russia

Abstract: A switching construction of partitions of an $n$-cube is studied. A new lower bound on the number of such partitions of rank that exceeds the rank of the Hamming code of the same length at most by 2 is established. Bibliogr. 17.

Keywords: perfect binary code, partition of an $n$-cube, rank of partition into perfect codes, lower bound on the number of partitions.

UDC: 519.8

Received: 27.04.2012
Revised: 04.02.2013



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026