RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2011 Volume 18, Issue 6, Pages 33–60 (Mi da669)

This article is cited in 4 papers

Cycles of lentgth 9 in the Pancake graph

E. V. Konstantinovaab, A. N. Medvedeva

a Novosibirsk State University, Novosibirsk, Russia
b S. L. Sobolev Institute of Mathematics, SB RAS, Novosibirsk, Russia

Abstract: A cycle $C_l$ of length $l$, where $6\le l\le n!$, can be embedded in the Pancake graph $P_n$, $n\ge3$, that is the Cayley graph on the symmetric group with the generating set of all prefix-reversals. The algebraic characterization of cycles of length six and seven via products of generating elements is known. We continue to study odd cycles. The explicit description of cycles of length nine by means of 10 canonical forms is given. It is also proved that each of vertices of $P_n$, $n\ge4,$ belongs to $\frac{8n^3-45n^2+61n-12}2$ cycles of length nine. In general, there are $O(n!\,n^3)$ different cycles of length nine in the graph. Ill. 5, tab. 1, bibliogr. 10.

Keywords: admissible subgraph, indicator of subgraph's quality, Pareto optimal subgraph.

UDC: 519.174

Received: 25.04.2011
Revised: 13.07.2011



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026