RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2010 Volume 17, Issue 6, Pages 50–55 (Mi da629)

This article is cited in 4 papers

The automorphism group of a $q$-ary Hamming code

E. V. Gorkunov

Novosibirsk State University, Novosibirsk, Russia

Abstract: It is well known that the semilinear symmetry group of a $q$-ary Hamming code $\mathcal H$ with length $n=\frac{q^m-1}{q-1}$ is isomorphic to $\mathit\Gamma L_m(q)$. This does not clarify if all symmetries of the code are semilinear or not. Here we prove that each symmetry of the code constituted by all triples in $\mathcal H$ is semilinear. This implies that every symmetry of the Hamming code is semilinear. So, it is shown that the automorphism group of a $q$-ary Hamming code is isomorphic to the semidirect product $\mathit\Gamma L_m(q)\rightthreetimes\mathcal H$. Bibliogr. 4.

Keywords: the Hamming code, automorphism group.

UDC: 519.725

Received: 15.02.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026