RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2022 Volume 29, Issue 4, Pages 104–123 (Mi da1311)

This article is cited in 2 papers

On the existence of Agievich-primitive partitions

Yu. V. Tarannikovab

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia
b Moscow Center for Fundamental and Applied Mathematics, 1 Leninskie Gory, 119991 Moscow, Russia

Abstract: We prove that for any positive integer $m$ there exists the smallest positive integer $N=N_q(m)$ such that for $n>N$ there are no Agievich-primitive partitions of the space $\mathbf{F}_q^n$ into $q^m$ affine subspaces of dimension $n-m$. We give lower and upper bounds on the value $N_q(m)$ and prove that $N_q(2)=q+1$. Results of the same type for partitions into coordinate subspaces are established. Bibliogr. 16.

Keywords: affine subspace, partition of a space, bound, bent function, coordinate subspace, face, associative block design.

UDC: 519.115.5

Received: 11.07.2022
Revised: 28.07.2022
Accepted: 28.07.2022

DOI: 10.33048/daio.2022.29.747


 English version:
Journal of Applied and Industrial Mathematics, 2022, 16:4, 809–820

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026