RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2022 Volume 29, Issue 2, Pages 62–79 (Mi da1298)

This article is cited in 1 paper

On the number of points on the curve $y^2 = x^{7} + ax^4 + bx$ over a finite field

S. A. Novoselov, Yu. F. Boltnev

Immanuel Kant Baltic Federal University, 14 Aleksandr Nevskii Street, 236041 Kaliningrad, Russia

Abstract: We provide explicit formulae for the number of points on a genus $3$ hyperelliptic curve of type $y^2 = x^{7} + a x^{3} + b x$ over a finite field $\mathbb{F}_q$ of characteristic $p > 3$. As an application of these formulae, we prove that point-counting problem on this type of curves has heuristic time complexity of order $O(\log^4{q})$ bit operations. Tab. 2, bibliogr. 27.

Keywords: hyperelliptic curve, point-counting, characteristic polynomial.

UDC: 519.8+518.25

Received: 31.10.2021
Revised: 31.01.2022
Accepted: 07.02.2022

DOI: 10.33048/daio.2022.29.726


 English version:
Journal of Applied and Industrial Mathematics, 2022, 16:2, 302–312


© Steklov Math. Inst. of RAS, 2026