RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2022 Volume 29, Issue 1, Pages 5–17 (Mi da1289)

Complexity of the max cut problem with the minimal domination constraint

V. V. Voroshilov

Dostoevsky Omsk State University, 55a Mir Avenue, 644077 Omsk, Russia

Abstract: Let $G=(V,E,w)$ be a simple weighted undirected graph with nonnegative weights of its edges. Let $D$ be a minimal dominating set in $G.$ Cutset induced by $D$ is a set of edges with one vertex in the set $D$ and the other in $V\setminus D.$ The weight of a cutset is the total weight of all its edges. The paper deals with the problem of finding a cutset with maximum weight among all minimal dominating sets. In particular, nonexistence of polynomial approximation algorithm with ratio better than $|V|^{-\frac{1}{2}}$ in case of $\text{P}\ne\text{NP}$ is proved. Illustr. 3, bibliogr. 8.

Keywords: graph, cutset, dominating set, weighted graph, optimization problem, approximation.

UDC: 519.8+518.25

Received: 19.02.2021
Revised: 01.12.2021
Accepted: 02.12.2021

DOI: 10.33048/daio.2022.29.706


 English version:
Journal of Applied and Industrial Mathematics, 2022, 16:1, 168–174

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026