RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2021 Volume 28, Issue 4, Pages 117–124 (Mi da1288)

A win-win algorithm for the $(k+1)$-LST/$k$-pathwidth problem

A. G. Klyuchikova, M. N. Vyalyiabc

a Moscow Institute of Physics and Technology, 9 Institutskii Lane, 141701 Dolgoprudnyi, Russia
b Federal Research Center “Computer Science and Control” RAS 44 Bld. 2 Vavilov Street, 119333 Moscow, Russia
c HSE University, 11 Pokrovskii Boulevard, 109028 Moscow, Russia

Abstract: We describe a win-win algorithm that produces in polynomial of size of a graph $G$ and given parameter $k$ time either a spanning tree with al least $k+1$ leaves or a path decomposition with width at most $k$. This algorithm is optimal due to the path decomposition theorem [1]. Bibliogr. 5.

Keywords: path decomposition, spanning tree, $k$-LST problem, win-win algorithm, FPT.

UDC: 519.178

Received: 12.04.2021
Revised: 02.08.2021
Accepted: 03.08.2021

DOI: 10.33048/daio.2021.28.710


 English version:
Journal of Applied and Industrial Mathematics, 2021, 15:4, 627–630


© Steklov Math. Inst. of RAS, 2026