RUS  ENG
Full version
JOURNALS // Diskretnyi Analiz i Issledovanie Operatsii // Archive

Diskretn. Anal. Issled. Oper., 2020 Volume 27, Issue 4, Pages 5–20 (Mi da1265)

This article is cited in 1 paper

A maximum dicut in a digraph induced by a minimal dominating set

V. V. Voroshilov

Dostoevsky Omsk State University, 55a Mir Avenue, 644077 Omsk, Russia

Abstract: Let $G = (V,A)$ be a simple directed graph and let $S\subseteq V$ be a subset of the vertex set $V$. The set $S$ is called dominating if for each vertex $j\in V\setminus S$ there exist at least one $i\in S$ and an edge from $i$ to $j$. A dominating set is called (inclusion) minimal if it contains no smaller dominating set. A dicut $\overline{S}$ is a set of edges $(i,j)\in A$ such that $i\in S$ and $j\in V\setminus S$. The weight of a dicut is the total weight of all its edges. The article deals with the problem of finding a dicut $\overline{S}$ with maximum weight among all minimal dominating sets. Illustr. 6, bibliogr. 8.

Keywords: directed graph, weighted graph, maximum dicut, inclusion minimal dominating set.

UDC: 519.8+518.25

Received: 27.05.2020
Revised: 19.06.2020
Accepted: 22.06.2020

DOI: 10.33048/daio.2020.27.691


 English version:
Journal of Applied and Industrial Mathematics, 2020, 14:4, 792–801

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026