RUS  ENG
Full version
JOURNALS // Computer Research and Modeling // Archive

Computer Research and Modeling, 2015 Volume 7, Issue 3, Pages 631–639 (Mi crm229)

ÑÅÊÖÈÎÍÍÛÅ ÄÎÊËÀÄÛ

XFEL diffraction patterns representation method for classification, indexing and search

S. A. Bobkova, A. B. Teslyuka, O. Yu. Gorobtsovab, O. M. Yefanovc, R. P. Kurtab, V. A. Ilyinad, M. V. Golosovaa, I. A. Vartan'yantseb

a National Research Center “Kurchatov Institute”, 1 Kurchatov Sq., Moscow 123182, Russia
b Deutsches Elektronen-Synchrotron DESY, 85 Notkestraße, D-22607 Hamburg, Germany
c Center for Free-Electron Laser Science, 85 Notkestraße, D-22607 Hamburg, German
d Lomonosov Moscow State University,GSP-1, 1-52 Leninskie Gory, Moscow, 119991, Russia
e National Research Nuclear University MEPhI, 31 Kashirskoe highway, 115409, Moscow, Russia

Abstract: The paper presents the results of application of machine learning methods: principle component analysis and support vector machine for classification of diffraction images produced in experiments at free-electron lasers. High efficiency of this approach presented by application to simulated data of adenovirus capsid and blue-tongue virus core. This dataset were simulated with taking into account the real conditions of the experiment on lasers free electrons such as noise and features of used detectors.

Keywords: principle component analysis, support vector machine, coherent diffraction imaging.

UDC: 004.02, 004.94

Received: 21.01.2015

DOI: 10.20537/2076-7633-2015-7-3-631-639



© Steklov Math. Inst. of RAS, 2026