Abstract:
The paper proposes and investigates a mathematical model of a distributed computing system of parallel interacting processes competing for the use of a limited number of copies of a structured software resource. In cases of unlimited and limited parallelism by the number of processors of a multiprocessor system, the problems of determining operational and exact values of the execution time of heterogeneous and identically distributed competing processes in a synchronous mode are solved, which ensures a linear order of execution of blocks of a structured software resource within each of the processes without delays. The obtained results can be used in a comparative analysis of mathematical relationships for calculating the implementation time of a set of parallel distributed interacting competing processes, a mathematical study of the efficiency and optimality of the organization of distributed computing, solving problems of constructing an optimal layout of blocks of an identically distributed system, finding the optimal number of processors that provide the directive execution time of given volumes of computations. The proposed models and methods open up new prospects for solving problems of optimal distribution of limited computing resources, synchronization of a set of interacting competing processes, minimization of system costs when executing parallel distributed processes.