Abstract:
In this work, a hybrid-forecasting model is proposed. The model includes a recursive penalty P-spline with parameters adaptation based on evolutionary optimization algorithms. In short-term forecasting, especially in real-time systems, the urgent task is to increase the forecast speed without compromising its quality. High forecasting speed has been achieved by an economical computational scheme of a recurrent P-spline with a shallow depth of prehistory. When combined with the adaptation of some parameters of the P-spline, such an approach allows you to control the forecast accuracy.
Keywords:penalized spline, smoothing spline, digital filter, impulse infinite response (IIR filter), instrumental function, amplitude and phase-frequency response.