Abstract:
Advances in the neural networks have brought revolution in many areas, especially those related to image processing and analysis. The most complex is a task of analyzing biomedical data due to a limited number of samples, imbalanced classes, and low-quality labelling. In this paper, we look into the possibility of using neural networks when solving a task of semantic segmentation of fundus. The applicability of the neural networks is evaluated through a comparison of image segmentation results with those obtained using textural features. The neural networks are found to be more accurate than the textural features both in terms of precision ($\sim25\%$) and recall ($\sim50\%$). Neural networks can be applied in biomedical image segmentation in combination with data balancing algorithms and data augmentation techniques.