Abstract:
We propose a novel procedure for the supercritical fluid behavior visualization and measurements based on SPIM or similar microscopic techniques in the rotational micro-capillary tubes. We propose to replace a time-lapse registration by a superfast registration (using high-speed cameras) for in situ fixation of supercritical fluid dynamics and for slow-motion representations of physical states and transitions, distinguishable using mathematical morphology tools. An elegant version of this method for our purposes includes also a cross-correlation spectroscopy for supercritical fluid behavior analysis Also we propose to use SPIM-like (Selective Plane Illumination Microscopy) setups with 2-objective, 3-objective or 4-objective registration schemes for this purpose in order to perform PIV (Particle Image Velocimetry), LDV (Laser Doppler Velocimetry) / LDA (Laser Doppler Anemometry) / LDF (Laser Doppler Flowmetry) and similar measurements using the above configuration.