RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2021 Volume 67, Issue 3, Pages 483–506 (Mi cmfd430)

Delay differential equations with differentiable solution operators on open domains in $C((-\infty,0],\mathbb{R}^n)$ and processes for Volterra integro-differential equations

H.-O. Walther

Mathematisches Institut, Universität Gießen, Gießen, Germany

Abstract: For autonomous delay differential equations $x'(t)=f(x_t)$ we construct a continuous semiflow of continuously differentiable solution operators $x_0\mapsto x_t$, $t\ge0$, on open subsets of the Fréchet space $C((-\infty,0],\mathbb{R}^n)$. For nonautonomous equations this yields a continuous process of differentiable solution operators. As an application, we obtain processes which incorporate all solutions of Volterra integro-differential equations $x'(t)=\int_0^tk(t,s)h(x(s))ds$.

UDC: 517.929 + 517.968.7

DOI: 10.22363/2413-3639-2021-67-3-483-506



© Steklov Math. Inst. of RAS, 2026