RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2016 Volume 59, Pages 53–73 (Mi cmfd287)

This article is cited in 4 papers

On the stabilization rate of solutions of the Cauchy problem for a parabolic equation with lower-order terms

V. N. Denisov

M. V. Lomonosov Moscow State University, Moscow, Russia

Abstract: For a parabolic equation in the half-space $\overline D=\mathbb R^N\times[0,\infty)$, $N\geqslant3$, we consider the Cauchy problem
\begin{gather*} L_1u\equiv Lu+c(x,t)u-u_t=0,\quad (x,t)\in D,\\ u(x,0)=u_0(x),\quad x\in\mathbb R^N. \end{gather*}
Depending on estimates on the coefficient $c(x,t),$ we establish power or exponential rate of stabilization of solutions of the Cauchy problem равномерно по $x$ на каждом компакте $K$ в $\mathbb R^N$ для произвольной ограниченной непрерывной в $\mathbb R^N$ начальной функции $u_0(x)$.

UDC: 517.956.4



© Steklov Math. Inst. of RAS, 2026