RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2011 Volume 42, Pages 95–117 (Mi cmfd193)

This article is cited in 1 paper

Generic profit singularities in time-averaged optimization for cyclic processes in polydynamical systems

A. A. Davydovab, H. Mena-Matosc, C. S. Moreirac

a Vladimir State University, Russia
b IIASA, Austria
c Universidade do Porto and Centro de Matemática da Universidade do Porto, Portugal

Abstract: We consider the optimization problem of maximizing the time-averaged profit for the motion of a smooth polydynamical system on the circle in the presence of a smooth profit density. If the problem depends on a $k$-dimensional parameter, then the optimal averaged profit is a function of the parameter. It is known from [4] that an optimal motion can always be selected among stationary strategies and a special type of periodic motions called $level cycles$. We present a classification of all generic singularities of the optimal averaged profit if $k\le2$ and the maximum is provided by level cycles.

UDC: 517.938


 English version:
Journal of Mathematical Sciences, 2014, 199:5, 510–534

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026