RUS  ENG
Full version
JOURNALS // Contemporary Mathematics. Fundamental Directions // Archive

CMFD, 2007 Volume 25, Pages 8–20 (Mi cmfd102)

This article is cited in 5 papers

On Conditions of the Average Convergence (Upper Boundedness) of Trigonometric Series

A. S. Belov

Ivanovo State University

Abstract: Let $c_n=\widehat f(n)$ be Fourier coefficients of a function $f\in L_{2\pi}$. We prove that the condition
$$ \sum_{k=\left[\frac n2\right]}^{2n}\frac{|c_k|+|c_{-k}|}{|n-k|+1}=o(1) \quad \big(=O(1)\big) $$
is necessary for the convergence of the Fourier series of $f$ in the $L$-metric; moreover, this condition is sufficient under some additional hypothesis for Fourier coefficients of $f$.

UDC: 517.5


 English version:
Journal of Mathematical Sciences, 2008, 155:1, 5–17

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026