RUS  ENG
Full version
JOURNALS // Chelyabinskiy Fiziko-Matematicheskiy Zhurnal // Archive

Chelyab. Fiz.-Mat. Zh., 2017 Volume 2, Issue 3, Pages 257–265 (Mi chfmj61)

This article is cited in 1 paper

Mathematics

On refinements of neo-classical inequality and its applications to stochastic differential equations and Brownian motion

D. S. Doncheva, S. M. Sitnikb, E. L. Shishkinac

a Sofia University "St. Kliment Okhridski", Sofia, Bulgaria
b Belgorod State National Research University, Belgorod, Russia
c Voronezh State University, Voronezh, Russia

Abstract: In this article some estimates are refined for the best constant in the well-known so called neo-classical inequality, which is the generalization of the Newton binomial formula in terms of Wright — Fox functions. The results of this article are applied to stochastic differential equations, Brownian motion and estimates of probability distributions.

Keywords: neo-classical inequality, stochastic differential inequality, Wright — Fox function, Berry — Essen inequality, Meller — König — Zeller operators.

Received: 09.10.2017
Revised: 20.10.2017



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026