RUS  ENG
Full version
JOURNALS // Chelyabinskiy Fiziko-Matematicheskiy Zhurnal // Archive

Chelyab. Fiz.-Mat. Zh., 2022 Volume 7, Issue 1, Pages 80–96 (Mi chfmj272)

This article is cited in 1 paper

Mathematics

$\rho$-Almost periodic type functions in ${\mathbb R}^{n}$

M. Kostić

University of Novi Sad, Novi Sad, Serbia

Abstract: We investigate various classes of multi-dimensional $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, multi-dimensional quasi-asymptotically $\rho$-almost periodic type functions and multi-dimensional $\rho$-slowly oscillating type functions of the form $F : I \times X \rightarrow Y,$ where $n\in {\mathbb N},$ $\emptyset \neq I \subseteq {\mathbb R}^{n},$ $\omega \in {\mathbb R}^{n} \setminus \{0\},$ $X$ and $Y$ are complex Banach spaces and $\rho$ is a binary relation on $Y.$ The main structural properties of these classes of almost periodic type functions are deduced. We also provide certain applications of our results to the abstract Volterra integro-differential equations.

Keywords: $(S,{\mathbb D}, {\mathcal B})$-asymptotically $(\omega,\rho)$-periodic type functions, quasi-asymptotically $\rho$-almost periodic type functions, remotely $\rho$-almost periodic type functions, $\rho$-slowly oscillating type functions, abstract Volterra integro-differential equations.

UDC: 517.518.6

Received: 14.10.2021
Revised: 03.03.2022

Language: English

DOI: 10.47475/2500-0101-2022-17106



© Steklov Math. Inst. of RAS, 2026