RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2020 Volume 21, Issue 1, Pages 364–367 (Mi cheb879)

This article is cited in 3 papers

BRIEF MESSAGE

On the values of Beatty sequence in an arithmetic progression

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In the paper, we consider $N_d(x)=N(x;\alpha,\beta;d,a)$, $x\in\mathbb{N}$, which is the number of values of Beatty sequence $[\alpha n+\beta]$, $1\leqslant n\leqslant x$, for $\alpha>1$ irrational and with bounded partial quotients, $\beta\in[0;\alpha)$, in an arithmetic progression $(a+kd)$, $k\in\mathbb{N}$. We prove the asymptotic formula $N_d(x) = \frac{x}{d} + O(d\ln^3 x)$ as $x\to\infty,$ where the implied constant is absolute. For growing difference $d$ the result is non-trivial provided $d\ll \sqrt{x}\ln^{-3/2-\varepsilon}x$, $\varepsilon>0$.

Keywords: Beatty sequence, arithmetic progression, asymptotic formula.

UDC: 511.35, 517.15

DOI: 10.22405/2226-8383-2018-21-1-364-367



© Steklov Math. Inst. of RAS, 2026