RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2018 Volume 19, Issue 2, Pages 523–528 (Mi cheb670)

Estimation of the mean value of the remainder term in the asymptotic formula for the sum of values of an arithmetical function on a Beatty sequence

A. V. Begunts, D. V. Goryashin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper is concerned with the estimation of average values of $\Delta(\alpha,N)=\Delta(\alpha,0,N)$ and $\Delta(\alpha,\beta,N)$ with respect to $\alpha>1$ and $0<\beta<\alpha$ respectively, where $\Delta(\alpha,\beta,N)$ denotes the remainder term in the formula of the form
$$\sum_{n\leq N}f([\alpha n+\beta])=\frac{1}{\alpha}\sum_{m\leq \alpha N+\beta}f(m)+\Delta(\alpha,\beta,N),$$
for an arbitrary number-theoretical fuction $f(n)$.

Keywords: Beatty sequences, integer sequence, mean value of a number-theoretic function.

UDC: 511.35, 517.15

Received: 19.06.2018
Accepted: 17.08.2018

DOI: 10.22405/2226-8383-2018-19-2-523-528



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026