RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2025 Volume 26, Issue 3, Pages 235–246 (Mi cheb1561)

Sum of short exponential sums with prime numbers

F. Z. Rakhmonov

A. Juraev Institute of Mathematics of the National Academy of Sciences of Tajikistan (Dushanbe)

Abstract: For sufficiently large integers $K$, $x$, $y$, $q$, subject to $K\le y<x$, $n$ — fixed natural number, $\alpha$ — real, $\left|\alpha-\frac{a}{q}\right|\le\frac1{q^2}$, $(a,q)=1$, $q\ge1$, an estimate of the form
$$ \sum_{k=1}^K\left|\sum_{x-y<p\le x}e(\alpha kp^n)\right| \ll Ky\left(\frac1q+\frac1y+\frac{q}{Ky^n}+\frac1{K^{2^{n-1}}}\right)^{2^{-n-1}}\mathscr{L}^{\frac{n^2}{2^{n+1}}}, $$
which is a strengthening and generalization of I. M. Vinogradov's theorem on the distribution of fractional parts of $\{\alpha p\}$.

Keywords: Short exponential sum of G. Weyl with prime numbers, uniform distribution modulo unity, non-trivial estimate, fractional part.

UDC: 511. 344

Received: 07.04.2025
Revised: 27.08.2025

DOI: 10.22405/2226-8383-2025-26-3-235-246



© Steklov Math. Inst. of RAS, 2026