RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2024 Volume 25, Issue 4, Pages 120–137 (Mi cheb1477)

This article is cited in 2 papers

Asymptotic formula in generalization of ternary Esterman problem with almost proportional summands

F. Z. Rahmonov

A. Dzhuraev Institute of Mathematics (Dushanbe)

Abstract: For $n \geq 3$, an asymptotic formula for the number of representations of a sufficiently large natural number $N$ in the form $p_1+p_2+m^n=N$, is obtained. Here $p_1$, $p_2$ are prime numbers, and $m$ is a natural number, satisfying the following conditions
$$ \left|p_k-\mu_kN\right|\le H, k=1,2, \left|m^n-\mu_3N\right|\le H, H\ge N^{1-\frac1{n(n-1)}}\mathscr{L}^{\frac{2^{n+1}}{n-1}+n-1}. $$


Keywords: Estermann problem, almost proportional summands, short exponential sum of G. Weyl, small neighborhood of centers of major arcs.

UDC: 511. 344

Received: 05.05.2024
Accepted: 24.12.2024

DOI: 10.22405/2226-8383-2024-25-4-120-137



© Steklov Math. Inst. of RAS, 2026