BRIEF MESSAGES
Kolmogorov's type inequalities in Bergman space $B_2$ and some of its applications
D. K. Tukhliev Khujand State University (Khujand, Tajikistan)
Abstract:
Let
$\mathbb{N}$ be the set of natural numbers,
$\mathbb{Z_{+}}$ be the set of non-negative integers,
$\mathbb{C}$ be the set of complex numbers,
$A(U)$ be the set of analytic functions in the unit circle
$U:=\left\{z\in \mathbb{C}:|z|<1\right\}$,
$B_2$ – be the Bergman spaces of functions
$f\in A(U)$, endowed with a finite norm
$$\|f\|_2:=\|f\|_{B_2}=\left(\frac{1}{\pi}\displaystyle\iint_{(U)}|f(z)|^2d\sigma\right)^{1/2}.$$
For
$f\in A(U)$, we denote the usual derivative of order
$m\in \mathbb{N}$ by
$f^{(m)}(z)$ and introduce a class of functions
$$B^{(m)}_2:=\left\{f\in B_2:\|f^{(m)}\|_2<\infty\right\}.$$
Let
$E_{n-1}(f)_2$ be the magnitude of the best approximation of function
$f\in B_2$ by complex algebraic polynomials of degree
$\leq n-1.$ In this paper, a number of exact inequalities are found between the value of the best approximation of intermediate derivatives
$E_{n-\nu-1}(f^{(\nu)})_2$ $(\nu=1,2,\cdots,m-1; m\geq2)$ and the best approximation
$E_{n-m-1}(f^{(m)})_2$ of the highest derivative
$f^{(m)}.$ Let $W^{(m)}_2:=W^{(m)}_2(U) \hspace{1mm} (m\in \mathbb{N})$ be a class of functions
$f\in B^{(m)}_2$ for which
$\|f^{(m)}\|_2\leq 1$. In this paper is proved that for any $n,m\in \mathbb{N}, \nu\in\mathbb{Z_+}, n>m\geq\nu$, the equality of takes place
$$E_{n-\nu-1}(W^{(m)}_2)_2=\sup\{E_{n-\nu-1}(f^{(\nu)})_2: f\in W^{(m)}_2\}= \frac{\alpha_{n,\nu}}{\alpha_{n,m}}\cdot\sqrt{\frac{n-m+1}{n-\nu+1}},$$
and also, in the space
$B_2$ for functions
$f\in B^{(m)}_2$ for all
$1\leq\nu\leq m-1, m\geq2$, an exact inequality of the Kolmogorov type
$$ E_{n-\nu-1}(f^{(\nu)})_2\leq A_{m,\nu}(n)(E_{n-1}(f)_2)^{1-\nu/m}\cdot(E_{n-m-1}(f^{(m)})_2)^{\nu/m},$$
is found, where the constant
$A_{m,\nu}(n)$ is explicitly written out. Some applications of the resulting inequality are given.
Keywords:
Bergman space, exact inequalities, mean-square approximations, best polynomial approximation, extremal problems, Kolmogorov type inequality.
UDC:
517.5
Received: 27.07.2023
Accepted: 21.12.2023
DOI:
10.22405/2226-8383-2023-24-5-228-236