RUS  ENG
Full version
JOURNALS // Chebyshevskii Sbornik // Archive

Chebyshevskii Sb., 2023 Volume 24, Issue 4, Pages 78–84 (Mi cheb1349)

On the chromatic number of slices without monochromatic unit arithmetic progressions

V. O. Kirova

Lomonosov Moscow State University (Moscow)

Abstract: For $h,n\geq 1$ and $e>0$ we consider a chromatic number of the spaces $\mathbb{R}^n\times[0, e]^h$ and general results in this problem. Also we consider the chromatic number of normed spaces with forbidden monochromatic arithmetic progressions. We show that for any $n$ there exists a two-coloring of $\mathbb{R}^n$ such that all long unit arithmetic progressions contain points of both colors and this coloring covers spaces of the form $\mathbb{R}^n\times[0, e]^h$.

Keywords: chromatic number, Hadwiger–Nelson problem.

UDC: 517

Received: 18.09.2023
Accepted: 11.12.2023

Language: English

DOI: 10.22405/2226-8383-2023-24-4-78-84



© Steklov Math. Inst. of RAS, 2026