This article is cited in
1 paper
On the best polynomial approximation of functions in the Hardy space $H_{q,R}, (1\le q\le\infty, R\ge 1)$
M. Sh. Shabozova,
G. A. Yusupovb a Tajik National University (Tajikistan, Dushanbe)
b Tajik National University (Tajikistan, Dushanbe)
Abstract:
Exact inequalities are found between the best polynomial approximation of functions analytics in the disk
$U_R:=\bigl\{z\in\mathbb{C}, |z|<R\bigr\},$ $R\ge1$ and the averaged modulus of continuity angular boundary values of the
$m$th order derivatives. For the class
$W_{q,R}^{(m)} \ (m\in\mathbb{Z}_+,$ $1\le q\le\infty, R\ge1)$ of functions
$f\in H_{q,R}^{(m)}$ whose
$m$-order derivatives
$f^{(m)}$ belong to the Hardy space
$H_{q,R}$ and satisfy the condition
$\|f ^{(m)}\|_{q,R}\le1,$ the exact values of the upper bounds of the best approximations are calculated. Moreover, for the class
$W^{(m)}_{q,R}(\Phi),$ consisting of all functions
$f\in H_{q,R}^{(m)},$ for which any
$k\in\mathbb{N}, m\in\mathbb{Z}_{+}, k>m$ the averaged moduli of continuity of the boundary values of the
$m$th order derivative
$f^{(m )},$ dominated in the system of points
$\{\pi/k\}_{k\in\mathbb{N}}$ by the given function
$\Phi,$ satisfy the condition
\begin{equation*} \int\limits_{0}^{\pi/k}\omega\bigl(f^{(m)},t\bigr)_{q,R}dt\le\Phi(\pi/k), \end{equation*}
the exact values of the Kolmogorov and Bernstein
$n$-widths are calculated in the norm of the space
$H_{q} \ (1\le q\le\infty).$
The results obtained generalize some results of L.V.Taikov on classes of analytic functions in a circle of radius
$R\ge1.$
Keywords:
the best approximation, Hardy space, modulus of continuity, majorizing function, $n$-widths.
UDC:
517.5
Received: 23.11.2022
Accepted: 24.04.2023
DOI:
10.22405/2226-8383-2023-24-1-182-193