RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2025 Number 1, Pages 23–32 (Mi basm627)

Reverse Hardy inequalities via $\mu$-proportional generalized fractional integral operators

Bouharket Benaissaa, Juan E. Nàpolesb, Bahtiyar Bayraktarc

a University of Tiaret-Algeria
b Universidad Nacional del Nordeste and Universidad Tecnologica Nacional, Argentina
c Bursa Uludag University, Turkiye

Abstract: In this paper, we present a further improvement of the reverse Hardy type inequality via $_{a^{+}}\mathfrak{I}_{\mu}^{\Phi}$ and $_{b^{-}}\mathfrak{I} _{\mu}^{\Phi}$, the proportional generalized fractional integral operators with respect to another strictly increasing continuous function $\mu$. We obtain a new result by using two parameters of integrability $p$ and $q$, some special cases are mentioned according to the choice of the function $\Phi$.

Keywords and phrases: $\mu$-proportional generalized fractional integral operators, Hardy inequality, Hölder inequality.

MSC: 26A33, 26D10

Received: 30.01.2023

Language: English

DOI: 10.56415/basm.y2025.i1.p23



© Steklov Math. Inst. of RAS, 2026