RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2019 Number 1, Pages 39–51 (Mi basm491)

On fully idempotent semimodules

Rafieh Razavi Nazari, Shaban Ghalandarzadeh

Faculty of Mathematics, K. N. Toosi University of Technology, Tehran, Iran

Abstract: Let $S$ be a semiring and $M$ an $S$-semimodule. Let $N$ and $L$ be subsemimodules of $M$. Set $N\star L:= Hom_{S}(M,L)N=\sum\{\varphi(N)\mid \varphi\in Hom_{S}(M,L)\}$. Then $N$ is called an idempotent subsemimodule of $M$, if $N=N\star N$. An $S$-semimodule $M$ is called fully idempotent if every subsemimodule of $M$ is idempotent. In this paper we study the concept of fully idempotent semimodules as a generalization of fully idempotent modules and investigate some properties of idempotent subsemimodules of multiplication semimodules.

Keywords and phrases: semiring, fully idempotent semimodule, multiplication semimodule, regular semimodule.

MSC: 16Y60

Received: 26.05.2018

Language: English



© Steklov Math. Inst. of RAS, 2026