RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014 Number 3, Pages 38–48 (Mi basm368)

Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals

Natalija Ladzoryshyn, Vasyl' Petrychkovych

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, 3b Naukova Str., 79060, L'viv, Ukraine

Abstract: A special equivalence of matrices and their pairs over quadratic rings is investigated. It is established that for the pair of $n\times n$ matrices $A,B$ over the quadratic rings of principal ideals $\mathbb Z[\sqrt k]$, where $(\operatorname{det}A,\operatorname{det}B)=1$, there exist invertible matrices $U\in GL(n,\mathbb Z)$ and $V^A,V^B\in GL(n,\mathbb Z[\sqrt k])$ such that $UAV^A=T^A$ and $UBV^B=T^B$ are the lower triangular matrices with invariant factors on the main diagonals.

Keywords and phrases: quadratic ring, matrices over quadratic rings, equivalence of pairs of matrices.

MSC: 15A21, 11R04

Received: 30.05.2014

Language: English



© Steklov Math. Inst. of RAS, 2026