RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2014 Number 2, Pages 36–43 (Mi basm358)

This article is cited in 3 papers

Research articles

On $\pi$-quasigroups of type $T_1$

Parascovia Syrbu, Dina Ceban

State University of Moldova, 60 A. Mateevici str., MD-2009 Chishinau, Moldova

Abstract: Quasigroups satisfying the identity $x(x\cdot xy)=y$ are called $\pi$-quasigroups of type $T_1$. The spectrum of the defining identity is precisely $q=0$ or $1\pmod3$, except for $q=6$. Necessary conditions when a finite $\pi$-quasigroup of type $T_1$ has the order $q=0\pmod3$, are given. In particular, it is proved that a finite $\pi$-quasigroup of type $T_1$ such that the order of its inner mapping group is not divisible by three has a left unit. Necessary and sufficient conditions when the identity $x(x\cdot xy)=y$ is invariant under the isotopy of quasigroups (loops) are found.

Keywords and phrases: minimal identity, $\pi$-quasigroup of type $T_1$, spectrum, inner mapping group, invariants under isotopy.

MSC: 20N05

Received: 25.11.2013

Language: English



© Steklov Math. Inst. of RAS, 2026