RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2013 Number 2-3, Pages 119–131 (Mi basm343)

Certain differential superordinations using a multiplier transformation and Ruscheweyh derivative

Alina Alb Lupaş

Department of Mathematics and Computer Science, University of Oradea, 1 Universitatii Street, 410087 Oradea, Romania

Abstract: In the present paper we define a new operator, by means of convolution product between Ruscheweyh derivative and the multiplier transformation $I(m,\lambda,l)$. For functions $f$ belonging to the class $\mathcal A$ we define the differential operator $IR_{\lambda,l}^m\colon\mathcal A\to\mathcal A$, $IR_{\lambda,l}^m(z):=(I(m,\lambda,l)\ast R^m)f(z)$, where $\mathcal A_n=\{f\in\mathcal H(U)\colon f(z)=z+a_{n+1}z^{n+1}+\dots,\ z\in U\}$ is the class of normalized analytic functions, with $\mathcal A_1=\mathcal A$. We study some differential superordinations regarding the operator $IR_{\lambda,l}^m$.

Keywords and phrases: differential superordination, convex function, best subordinant, differential operator.

MSC: 30C45, 30A20, 34A40

Received: 15.03.2013

Language: English



© Steklov Math. Inst. of RAS, 2026