RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011 Number 2, Pages 89–101 (Mi basm291)

The variational approach to nonlinear evolution equations

Viorel Barbu

Octav Mayer Institute of Mathematics of Romanian Academy, Iaşi, Romania

Abstract: In this paper, we present a few recent existence results via variational approach for the Cauchy problem
$$ \frac{dy}{dt}(t)+A(t)y(t)\ni f(t),\quad y(0)=y_0,\qquad t\in[0,T], $$
where $A(t)\colon V\to V'$ is a nonlinear maximal monotone operator of subgradient type in a dual pair $(V,V')$ of reflexive Banach spaces. In this case, the above Cauchy problem reduces to a convex optimization problem via Brezis–Ekeland device and this fact has some relevant implications in existence theory of infinite-dimensional stochastic differential equations.

Keywords and phrases: Cauchy problem, convex function, minimization problem, parabolic equations, porous media equation, stochastic partial differential equations.

MSC: 34H05, 34LRO, 47E05

Received: 15.07.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026