RUS  ENG
Full version
JOURNALS // Buletinul Academiei de Ştiinţe a Republicii Moldova. Matematica // Archive

Bul. Acad. Ştiinţe Repub. Mold. Mat., 2011 Number 2, Pages 17–22 (Mi basm285)

This article is cited in 1 paper

Estimation of the number of one-point expansions of a topology which is given on a finite set

V. I. Arnautov

Institute of Mathematics and Computer Science, Academy of Sciences of Moldova

Abstract: Let $X$ be a finite set and $\tau$ be a topology on $X$ which has precisely $m$ open sets. If $t (\tau)$ is the number of possible one-point expansions of the topology $\tau$ on $Y=X\bigcup\{y\}$, then $\frac{m\cdot(m+3)}2-1\ge t(\tau)\ge2\cdot m+\log_2m-1$ and $\frac{m\cdot(m+3)}2-1=t(\tau)$ if and only if $\tau$ is a chain (i.e. it is a linearly ordered set) and $t(\tau)=2\cdot m+\log_2m-1$ if and only if $\tau$ is an atomistic lattice.

Keywords and phrases: finite set, topologies, one-point expansions, lattice isomorphic, atomistic lattice, chain.

MSC: 54A10

Received: 24.05.2011
Revised: 21.09.2011

Language: English



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026