RUS  ENG
Full version
JOURNALS // Avtomatika i Telemekhanika // Archive

Avtomat. i Telemekh., 1985 Issue 9, Pages 31–41 (Mi at7541)

This article is cited in 1 paper

Deterministic Systems

On the classification and canonical forms of nonlinear controllable systems

V. I. Ëlkin

Moscow

Abstract: A differential geometrical approach to classification of nonlinear systems to be controlled is proposed. For systems of the form $\mathbf y=\mathbf f_0(\mathbf y)+\sum_{\alpha=1}^r\mathbf f_\alpha(\mathbf y)\mathbf u^\alpha$, $\mathbf y\in R^n$, $\mathbf u\in R^r$, results in reducing the problem to classification of Pfaff equation sets which result from system equations when the variables $\mathbf u$ are eliminated. Canonical forms are given for two cases: 1) $\operatorname{rank}\|f_\alpha^i(\mathbf y)\|_{\alpha=1,\dots,r}^{i=1,\dots,n}=n-1$, 2) $\operatorname{rank}\|f_\alpha^i(\mathbf y)\|_{\alpha=1,\dots,r}^{i=1,\dots,n}= \operatorname{rank}\|f_\alpha^i(\mathbf y)\|_{\alpha=0,1,\dots,r}^{i=1,\dots,n}$, $n\leqslant4$. The number of canonical forms in finite in these cases.

UDC: 62-501.5, 62-506


Received: 12.06.1984


 English version:
Automation and Remote Control, 1985, 46, 1089–1098

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026