RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2005 Volume 44, Number 2, Pages 148–172 (Mi al99)

This article is cited in 24 papers

Local Structure of Rogers Semilattices of $\Sigma^0_n$-Computable Numberings

S. Yu. Podzorov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences

Abstract: We deal in specific features of the algebraic structure of Rogers semilattices of $\Sigma^0_n$ – computable numberings, for $n\geqslant2$. It is proved that any Lachlan semilattice is embeddable (as an ideal) in such every semilattice, and that over an arbitrary non $0'$-principal element of such a lattice, any Lachlan semilattice is embeddable (as an interval) in it.

Keywords: Rogers semilattice, Lachlan semilattice, $\Sigma^0_n$-computable numbering.

UDC: 510.5

Received: 23.04.2004


 English version:
Algebra and Logic, 2005, 44:1, 82–94

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026