RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 1, Pages 84–107 (Mi al883)

This article is cited in 5 papers

Generating triples of involutions of groups of Lie type of rank two over finite fields

Ya. N. Nuzhin

Siberian Federal University, Krasnoyarsk

Abstract: For finite simple groups $U_5(2^n)$, $n>1$, $U_4(q)$, and $S_4(q)$, where $q$ is a power of a prime $p > 2$, $q-1\ne0\pmod4$, and $q\ne 3$, we explicitly specify generating triples of involutions two of which commute. As a corollary, it is inferred that for the given simple groups, the minimum number of generating conjugate involutions, whose product equals $1$, is equal to $5$.

Keywords: group of Lie type, finite simple group, generating triples of involutions.

UDC: 512.54

Received: 30.08.2017
Revised: 07.05.2019

DOI: 10.33048/alglog.2019.58.106


 English version:
Algebra and Logic, 2019, 58:1, 59–76

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026