RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2019 Volume 58, Number 1, Pages 52–68 (Mi al881)

This article is cited in 6 papers

Hochschild cohomologies of the associative conformal algebra $\mathrm{Cend}_{1,x}$

R. A. Kozlovab

a Novosibirsk State University
b Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: It is stated that the second Hochshild cohomology group of the associative conformal algebra $\mathrm{Cend}_{1,x}$ with values in any bimodule is trivial. Consequently, the given algebra splits off in every extension with nilpotent kernel.

Keywords: associative conformal algebra, split-off radical, Hochshild cohomologies.

UDC: 512.55

Received: 05.10.2017
Revised: 07.05.2019

DOI: 10.33048/alglog.2019.58.104


 English version:
Algebra and Logic, 2019, 58:1, 36–47

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026