RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2018 Volume 57, Number 6, Pages 684–710 (Mi al874)

This article is cited in 21 papers

Structure of Quasivariety Lattices. I. Independent Axiomatizability

A. V. Kravchenkoabcd, A. M. Nurakunove, M. V. Schwidefskyad

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Siberian Institute of Management — Branch of the Russian Presidental Academy of National Economics and Public Administration, Novosibirsk
c Novosibirsk State Technical University
d Novosibirsk State University
e Institute of Mathematics of the National Academy of Sciences of the Kyrgyz Republic

Abstract: We find a sufficient condition for a quasivariety $\mathbf{K}$ to have continuum many subquasivarieties that have no independent quasi-equational bases relative to $\mathbf{K}$ but have $\omega$-independent quasi-equational bases relative to $\mathbf{K}$. This condition also implies that $\mathbf{K}$ is $Q$-universal.

Keywords: independent basis, quasi-identity, quasivariety, quasivariety lattice, Q-universality.

UDC: 512.57

Received: 21.06.2017
Revised: 02.07.2018

DOI: 10.33048/alglog.2018.57.604


 English version:
Algebra and Logic, 2019, 57:6, 445–462

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026