RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2018 Volume 57, Number 3, Pages 261–278 (Mi al848)

This article is cited in 6 papers

Conjugacy of maximal and submaximal $\mathfrak X$-subgroups

W. Guoa, D. O. Revinbca

a Dep. Math., Univ. Sci. Tech. China, Hefei, 230026 P.R. China
b Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
c Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: Let $\mathfrak X$ be a class of finite groups closed under taking subgroups, homomorphic images, and extensions. Following H. Wielandt, we call a subgroup $H$ of a finite group $G$ a submaximal $\mathfrak X$-subgroup if there exists an isomorpic embedding $\phi\colon G\hookrightarrow G^*$ of the group $G$ into some finite group $G^*$ under which $G^\phi$ is subnormal in $G^*$ and $H^\phi=K\cap G^\phi$ for some maximal $\mathfrak X$-subgroup $K$ of $G^*$. We discuss the following question formulated by Wielandt: Is it always the case that all submaximal $\mathfrak X$-subgroups are conjugate in a finite group $G$ in which all maximal $\mathfrak X$-subgroups are conjugate? This question strengthens Wielandt's known problem of closedness for the class of $\mathscr D_\pi$-groups under extensions, which was solved some time ago. We prove that it is sufficient to answer the question mentioned for the case where $G$ is a simple group.

Keywords: finite group, maximal $\mathfrak X$-subgroup, submaximal $\mathfrak X$-subgroup, Hall $\pi$-subgroup, $\mathscr D_\pi$-property, $\mathscr D_\mathfrak X$-property.

UDC: 512.542.6

Received: 25.04.2017
Revised: 06.12.2017

DOI: 10.17377/alglog.2018.57.301


 English version:
Algebra and Logic, 2018, 57:3, 169–181

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026