RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2017 Volume 56, Number 3, Pages 354–366 (Mi al796)

This article is cited in 1 paper

Decompositions in complete lattices. II. Replaceable irredundant decompositions

M. V. Schwidefskyab

a Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk, 630090 Russia
b Novosibirsk State University, ul. Pirogova 1, Novosibirsk, 630090 Russia

Abstract: A characterization of lattices with replaceable irredundant decompositions is given in the following six classes:
– the class of upper and lower continuous lattices;
– the class of upper continuous join-semidistributive lattices;
– the class of upper semimodular lower continuous lattices;
– the class of upper semimodular join-semidistributive lattices;
– the class of consistent lower continuous lattices;
– the class of consistent join-semidistributive lattices.

Keywords: consistent lattice, irredundant decomposition, join-semidistributive, lattice, lower continuous, semimodular, strongly atomic, upper continuous, weakly atomic.

UDC: 512.56

Received: 05.04.2016
Revised: 10.11.2016

DOI: 10.17377/alglog.2017.56.305


 English version:
Algebra and Logic, 2017, 56:3, 236–244

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026