Abstract:
The uniformization theorem for $\Sigma$-predicates in a hereditarily finite superstructure over the real exponential field proved in [Algebra i Logika, 53, No. 1, 3–14 (2014)] is generalized to the case of an arbitrary $\Sigma$-predicate $P\subseteq\mathbb{HW(R}_{exp})\times\mathbb{HW(R}_{exp})$.
Keywords:hereditarily finite list superstructure over real exponential field, uniformization theorem.