RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2013 Volume 52, Number 5, Pages 606–631 (Mi al607)

This article is cited in 8 papers

$P$-stable Abelian groups

E. A. Palyutinab

a Sobolev Institute of Mathematics, Siberian Branch, Russian Academy of Sciences, pr. Akad. Koptyuga 4, Novosibirsk, 630090, Russia
b Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia

Abstract: $(P,a)$-stable and $(P,s)$-stable Abelian groups are described. It is also proved that every Abelian group is $(P,p)$-stable. In particular, results due to M. A. Rusaleev [Algebra Logika, 50, No. 2, 231–245 (2011)] and T. A. Nurmagambetov [Proc. 11th Conf. Math. Logic, Kazan State Univ., Kazan (1992), p. 106] derive from these.

Keywords: $(P,a)$-stable Abelian group, $(P,s)$-stable Abelian group.

UDC: 510.67+512.57

Received: 24.10.2012


 English version:
Algebra and Logic, 2013, 52:5, 404–421

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026