RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2012 Volume 51, Number 6, Pages 683–721 (Mi al559)

This article is cited in 13 papers

Thompson's conjecture for some finite simple groups with connected prime graph

N. Ahanjideh

Dep. Math., Shahrekord Univ., Shahrekord, Iran

Abstract: Let $n$ be an even number and either $q=8$ or $q>9$. We prove a conjecture of Thompson (Problem 12.38 in the Kourovka Notebook) for an infinite class of finite simple groups of Lie type. More precisely, if $S\in\{C_n(q),B_n(q)\}$, then every finite group $G$ for which $Z(G)=1$ and $N(G)=N(S)$ will be isomorphic to $S$. Note that $N(G)=\{n\colon G$ has a conjugacy class of size $n\}$. The main consequence of this result is showing the validity of $AAM$'s conjecture (Problem 16.1 in the Kourovka Notebook) for the groups under study.

Keywords: simple group, minimal normal subgroup, conjugacy class, centralizer.

UDC: 512.542

Received: 18.11.2011
Revised: 25.08.2012


 English version:
Algebra and Logic, 2013, 51:6, 451–478

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026