RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2011 Volume 50, Number 1, Pages 26–41 (Mi al473)

This article is cited in 11 papers

Levi quasivarieties of exponent $p^s$

V. V. Lodeishchikova

Barnaul, Russia

Abstract: For an arbitrary class $M$ of groups, $L(M)$ denotes a class of all groups $G$ the normal closure of any element in which belongs to $M$; $qM$ is a quasivariety generated by $M$. Fix a prime $p$, $p\ne2$, and a natural number $s$, $s\ge2$. Let $qF$ be a quasivariety generated by a relatively free group in a class of nilpotent groups of class at most 2 and exponent $p^s$, with commutator subgroups of exponent $p$. We give a description of a Levi class generated by $qF$.
Fix a natural number $n$, $n\ge2$. Let $K$ be an arbitrary class of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$. Assume also that for all groups in $K$, elements of order $2^m$, $0<m<n$, are contained in the center of a given group. It is proved that a Levi class generated by a quasivariety $qK$ coincides with a variety of nilpotent groups of class at most $2$ and exponent $2^n$, with commutator subgroups of exponent $2$.

Keywords: quasivariety, Levi classes, nilpotent groups.

UDC: 512.54.01

Received: 25.12.2009


 English version:
Algebra and Logic, 2011, 50:1, 17–28

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026