Abstract:
Centers of universal envelopes for Mal'tsev algebras are explored. It is proved that the center of the universal envelope for a finite-dimensional semisimple Mal'tsev algebra over a field of characteristic 0 is a ring of polynomials in a finite number of variables equal to the dimension of its Cartan subalgebra, and that universal enveloping algebra is a free module over its center. Centers of universal enveloping algebras are computed for some Mal'tsev algebras of small dimensions.
Keywords:Lie algebra, Mal'tsev algebra, bialgebra, universal enveloping algebra, primitive elements, center of algebra, Chevalley theorem, Costant theorem.