RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2007 Volume 46, Number 5, Pages 560–584 (Mi al315)

This article is cited in 11 papers

The Chevalley and Costant theorems for Mal'tsev algebras

V. N. Zhelyabina, I. P. Shestakovab

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
b Universidade de São Paulo, Instituto de Matemática e Estatística

Abstract: Centers of universal envelopes for Mal'tsev algebras are explored. It is proved that the center of the universal envelope for a finite-dimensional semisimple Mal'tsev algebra over a field of characteristic 0 is a ring of polynomials in a finite number of variables equal to the dimension of its Cartan subalgebra, and that universal enveloping algebra is a free module over its center. Centers of universal enveloping algebras are computed for some Mal'tsev algebras of small dimensions.

Keywords: Lie algebra, Mal'tsev algebra, bialgebra, universal enveloping algebra, primitive elements, center of algebra, Chevalley theorem, Costant theorem.

UDC: 512.554

Received: 12.03.2007


 English version:
Algebra and Logic, 2007, 46:5, 303–317

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026