RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2007 Volume 46, Number 3, Pages 290–298 (Mi al298)

This article is cited in 6 papers

Free subgroups of one-relator relative presentations

A. A. Klyachko

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Suppose that $G$ is a non-trivial torsion-free group and $w$ is a word over the alphabet $G\cup\{x^{\pm1}_1,\dots,x^{\pm1}_n\}$. It is proved that, for $n\geqslant2$, the group $\widetilde G=\langle G,x_1,x_2,\dots,x_n\,|\,w = 1\rangle$ always contains a non-Abelian free subgroup. For $n=1$, the question whether there exist non-Abelian free subgroups in $\widetilde G$ is amply settled for the unimodular case (i.e., where the exponent sum of $x_1$ in $w$ is one). Some generalizations of these results are discussed.

Keywords: relative presentations, one-relator groups, free subgroups.

UDC: 512.543.7+512.543.16

Received: 17.11.2005


 English version:
Algebra and Logic, 2007, 46:3, 158–162

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026