RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2023 Volume 62, Number 6, Pages 762–785 (Mi al2787)

Existence of independent quasi-equational bases. II

M. V. Schwidefsky

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk

Abstract: If a certain condition holds for a quasivariety $\mathbf{K}$ then $\mathbf{K}$ contains continuum many subquasivarieties having a finitely partitionable $\omega$-independent quasi-equational basis relative to $\mathbf{K}$. This is true, in particular, for each almost $ff$-universal quasivariety $\mathbf{K}$.

Keywords: quasivariety, independent quasi-equational basis, $ff$-universal quasivariety.

UDC: 512.56

Received: 22.01.2023
Revised: 02.12.2024

DOI: 10.33048/alglog.2023.62.604


 English version:
Algebra and Logic, 2024, 62:6, 516–531


© Steklov Math. Inst. of RAS, 2026