RUS  ENG
Full version
JOURNALS // Algebra i logika // Archive

Algebra Logika, 2001 Volume 40, Number 3, Pages 330–343 (Mi al224)

This article is cited in 2 papers

$p$-Groups with Chernikov Centralizers of Non-Identity Elements of Prime Order

A. M. Popov

Krasnoyarsk State Technical University

Abstract: Let $G$ be a $p$-group, $a$ its element of prime order $p$, and $C_G(a)$ a Chernikov group. We prove that either $G$ is a Chernikov group, or $G$ possesses a non-locally finite section w. r. t. a Chernikov subgroup in which a maximal locally finite subgroup containing an image of $a$ is unique. Moreover, it is shown that the set of groups which satisfy the first part of the alternative is countable, while the set of groups which comply with the second is of the power of the continuum for every odd $p$.

Keywords: $p$-group, Chernikov group, non-locally finite section, locally finite subgroup.

UDC: 512.544

Received: 05.01.2000
Revised: 24.05.2000


 English version:
Algebra and Logic, 2001, 40:3, 183–189

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026