Abstract:
V. B. Repnitskii showed that any lattice embeds in some subsemilattice lattice. In his proof, use was made of a result by D. Bredikhin and B. Schein, stating that any lattice embeds in the suborder lattice of a suitable partial order. We present a direct proof of Repnitskii's result, which is independent of Bredikhin–Schein's, giving the answer to a question posed by L. N. Shevrin and A. J. Ovsyannikov. We also show that a finite lattice is lower bounded iff it is isomorphic to the lattice of subsemilattices of a finite semilattice that are closed under a distributive quasiorder.